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Solutions are analyzed of the linearized relativistic Boltzmann equation for 
initial data from L2(r, p) in long-time and/or small-mean-free-path limits. In 
both limits solutions of this equation converge to approximate ones constructed 
with solutions of the set of differential equations called the equations of 
relativistic hydrodynamics. 
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1. I N T R O D U C T I O N  

One of the major problems in relativistic statistical mechanics is to provide 
a consistent derivation of the equations of hydrodynamics. In spite of the 
effort of many authors, (l 6) this problem is still open. There is even deep 
confusion in this subject due to various formulations of basic postulates 
and consequently various sets of both hydrodynamic variables and equa- 
tions. Among the best-known versions of relativistic hydrodynamics are the 
works of Eckart, ~1) Landau and Lifschitz, ~2) Israel, ~3) Israel and Stewart, (4) 
Liu et  al., (5) and van Kampen. (6) What is even worse is that there is still 
no definite experimental evidence in favor of any of these theories. On the 
other hand, in many physical situations, such as the description of the 
quark plasma found in heavy ion collisions (7) as well as in many models 
used in astrophysics, (8) one needs certain hydrodynamic equations. 

Here I want to avoid the arbitrariness connected with existing deriva- 
tions of relativistic hydrodynamics and prefer to assume that on the 
microscopic level the system can be accurately described by the relativistic 
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Boltzmann equation. (9'1~ My aim is to prove that in certain well-defined 
limits a solution of this equation can be approximated by a solution of a 
properly chosen set of differential equations I then call the equations of 
relativistic hydrodynamics. 

Similar to nonrelativistic theory, (11 15) the main ingredients of such an 
approach are certain integral estimates on the collision part of the 
linearized Boltzmann operator. These were done in ref. 16 (which hereafter 
will be referred to as I). Here I confine myself to a subclass of scattering 
cross sections analyzed in ], namely to cross sections corresponding to so- 
called cutoff hard interactions. For  such a class of cross sections one is able 
to perform fairly detailed analyses of spectral properties of the linearized 
relativistic Boltzmann operator and find then an exact form of solution to 
this equation in the long-t|me and/or small-mean-free-path limits. Next I 
postulate a closed set of differential equations for moments of five 
conserved quantities, i.e., density of particles and density of momentum and 
energy, and prove the existence of global solutions to these equations in 
Sobolev spaces Ht(r). With the help of these five moments I construct an 
approximation to the solution to the linearized Boltzmann equation and 
show that in both of the above-mentioned limits such an approximation 
agrees with the actual solution of the Boltzmann equation with corre- 
sponding initial data. I call this set the equations of relativistic 
hydrodynamics and in fact these are the same equations one can derive 
from the Boltzmann equation via the Chapman-Enskog expansion. ! con- 
sider here a weaker form of the meaning of hydrodynamics as a reduced 
description of a system, governed by the Boltzmann equation, valid for the 
long-time and/or small-mean-free-path limits. However, if one assumes that 
the connection between the long-time asymptotics of the Boltzmann equa- 
tion and the hydrodynamic description of the system holds in the 
relativistic theory as well as it holds in the nonrelativistic one, then the pre- 
sent approach leads at least to the correct asymptotic form of the equations 
of relativistic hydrodynamics. An outline of the results was given in ref. 24. 

2. T H E  L I N E A R I Z E D  R E L A T I V I S T I C  B O L T Z M A N N  E Q U A T I O N  

Let us consider a one-component classical relativistic gas of particles 
with rest mass m r 0 in flat space-time and in the absence of external forces. 
It is convenient to introduce dimensionless variables x ~ and p~ related to 
the usual dimensional four-vectors of position y~ and momentum q" by 
the relations x~=yF'/crl and p~=qUc/kT. The dimensionless mass is 
M=mc2/kT. It is convenient to interpret T as the temperature of the 
corresponding global equilibrium state, t/ is a time scale to be specified. 
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Formulas are written in covariant manner, using an arbitrary chosen 
frame of reference. In this frame one decomposes x ~ and p~ as follows: 

x~ = (t, r), p~ = (po, p) 

where as usual Po = ( M2 + p2)1/2. 
The evolution of the one-particle distribution function F(r, p, t) is 

governed by the relativistic Boltzmann equation: 

where 

0 F +  p OF s ~/2 
--Ot ~r = f d3Pl dl2g 2poPlo a(g, O)[F'F] - FEll  (2.1) 

S1/2 = [Pl + Pl 

2 g =  Ip~ --p] 

cos O = 1 -- 2(p~ -- p~u)(p~ -- p'U)(4M 2 - s ) - '  

dr2 = sin O dO dO 

a(g, O) is the differential scattering cross section. All the above quantities 
refer to the center-of-mass frame; F = F ( r , p ,  t), F1 =F(r ,  pi, t), F ' =  
F(r, p', t), and F'I = F(r, P'I, t). 

For a system close to a global equilibrium its distribution function can 
be written as 

F(r, p, t ) =  fo (P )+  [fo(P)]l/2f( r, P, t) (2.2) 

where the relativistic equilibrium distribution function fo(P) has the 
form (17) 

n 

f o - 4rcM 2 K2( M ) exp( - u~p ~) (2.3) 

The u ~ has the meaning of dimensionless hydrodynamic four-velocity, and 
K2(M) is the Bessel function of the second kind of index 2318) 

Substituting a function F in the form given by Eq. (2.2) into Eq. (2.1) 
and disregarding terms quadratic in f,  we obtain the linearized relativistic 
Boltzmann equation (LRBE): 

0J'_~_ p /.1/2 ~. 
& p o V f = J ~ p o j d 3 p ' d f 2 g s ' / 2 a ( g ' O ) f l o  

Plo 

• ~ e  (s  (f0)l/2 ( i/2 

1 
- - L [ f ]  (2.4) 



202 Dudyfiski 

In the following I consider Eq. (2.4) in several functional spaces and now 
introduce these spaces and define norms needed later. 

Let LP( o ) (o = r, p, k e R 3) denote the space of functions whose pth  
(1 ~< p ~< oe) power is integrable with respect to the Lebesgue measure in 
113. The usual norm in these space is denoted by l i f t  ~ )l l~<o ). Ht(r) denotes 
the Sobolev subspace of L2(r) functions the derivatives of which up to and 
including order l belong to L2(r). HZ(k) means the Fourier transform of 
HZ(r) with a norm 

Ilf(k)llH'<k) ----[1(1 +k2)l/2f(k)[lL2(k) 
- IIf(r)ll H'~) (2.5) 

In this and following denote the Fourier transform of f ( r )  by its argument, 
i.e., 

f (k )  = (2~z) 3/2  f e x p ( - i k r ) f ( r )  d3r 

Call Ho the L2(r, p) with a norm 

IlfHc2mp) =( f 'f(r,p)[2 d3pd3 r) 
1/2 

(2.6) 

Now define a partial Fourier transform in r of f e l l  o as 

f (k ,  p) = (270 3/2  f d3 r exp( - ikr) f(r ,  p) (2.7) 

Denote Ho = {f(k, p): f(r ,  p) ~ Ho} and define 

IIf(k, p)ll & = f d3k d3 p If(k, p)k 2 = Ilfll L2(r,p) (2.8) 

For all 1 >/0, define H t as the Hilbert subspace of LZ(r, p) consisting of all 
Ht(r)-valued L2(p) functions with a norm 

IIf(r, P)llt IIf( , 2 = o p)[I Ht(r) d3r 

_= [(1 + k 2 )  U2 If(k, p)] ]2 d3 k d3pl 

= [bf(k, P)I]z (2.9) 
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For a scattering cross section a(g, 0) ,  assume that there exist constants a, 
fi, ~, 7, 7, B, B', /~, and Co such that 

7 >  - 2 ,  0 < c~ < min(4, 4 + 7), 0 < f l ~ < 7 + 2  

'2> -2, 0 ~/~9'+ 2 
and the following are fulfilled: 

(i) a(g, O) <<. (Bg ~ + B'g ~) sin >' O 
g/J+ l 

(ii) a(g, O)/> B sin ~ O 
co+g 

(2.10a) 

(2.10b) 

As shown in I, the assumption (2.10a) makes it possible to express the 
relativistic collision operator L on the rhs of Eq. (2.4) in the following 
form: 

1 1 
- Z = -  E-v(p)- I -K2-K1] 
g g 

where 

KiEf(r, p, t)] = f d3p,k~(p, p , ) f ( r ,  p, t), 

k~(p'P')= gs'/2 (r + 

i = 1 , 2  

dO sin O0(g, O) 

1 S 3 / 2 f ;  [ ( lq -x2 ) i /2 ( r - t -V l ) ]  
k2(p, Pl) dxexp - 

4 gpopm 2 

I g I 1 + (1 +x2)1/2 
x a  sin(0/2), t) (1 + x2)l/2 I~ 1 2 g  x 

v ( p )  = f d 3 P l  k l ( P ,  P l )  exp[(z - ~ 1 ) / 2 ]  

and 

72 = bl#pu, 72 1 = ul tp l#  

sin(t)/2) = 21/2gig 2 - M 2 + (g2 + M2)(1 + x2)~/z] -~/2 

p APt  is a vector product of p and pt calculated in the rest frame of the 
gas [in this frame u ~ = (1, 0, 0, 0)];  the explicit expression for ]p/x p~[ has 
the form 
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I have introduced explicitly the small parameter 

e = 2M2K2(M)n l = (rn2/kT) K2(m/kr) n 

One sees that e is related to the mean free path in the corresponding equi- 
librium state and e -~ 0 as n --* oo. 

It was shown in I that the operator K is a compact operator in L2(p). 
The condition (2.10b) ensures that the function v(p) is a real function and 
there exist two positive constants v 0 and ~o such that 

0 < Vo ~< v(p) ~< ~o(P0)~; 2 > 0 

Thus, Eq. (2.10b) defines the so-called hard interactions. The coef- 
ficient 2 is related to the constant j~; the details of the proof of these 
statements are given in I. 

3. GENERAL PROPERTIES OF THE RELATIVISTIC 
B O L T Z M A N N  OPERATOR 

It was shown in the previous section that for a(g, O) fulfilling condi- 
tions (2.10) the LRBE can be written as 

at f +  p V f =  1 L [ f ]  (3.1) 
Po 

I describe now general properties of the operator L that will be needed 
later. 

(i) L is a closed, unbounded, self-adjoint operator on  L2(p)  with a 
domain 

D(L) : D(v(p)) : :  { f  E L2(p): v(p) f (p )  6 L2(p) } 

(ii) For al l f sD(L) ,  L is nonpositive operator, i.e., 

(3.2) 

(f, Lf)<. O (3.3) 

Lf=O iff f E N o  := {fl/2, pxf~/2, pyfU2, pzf~/2, pof~/2} (3.4) 

Denote the spectrum of the operator L as a(L). Then: 

(iii) a(L) consists of discrete and continuous parts. The latter is iden- 
tical with a set of values assumed by - v ( p )  for all possible values of p e N 3, 
i.e., with the interval ] - o r ,  -Vo].  By a suitable choice of the time scale ~/ 
we can set the v0 = 1. The discrete part of a(L) consists of eigenvalues of 
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finite multiplicity which can accumulate only at the boundary of the 
continuous spectrum. Denote 

vl := sup{a (L)n  [ - o %  - / ~ ] ; f l > 0 }  

Because zero is not an accumulation point of the spectrum, it follows that 
Y1 >0.  

For f ~ H l ( r , p ) ,  l~>0, we can perform a Fourier transform in r of 
Eq. (3.1) and we obtain 

1 
c?tf(k, p, t) = -  Bk,[f(k, p, t)] (3.5) 

where 

Bk~ = --v(p) + K-- ike p (3.6) 
P0 

In the following we will be mainly concerned with Eq. (3.5). I list 
below some important properties of the operator Bk, that will be used 
frequently. As IP/Po] ~< 1, it follows that for every k e R  3 and ee [0, 1], 
D(Bk~ ) = D(L)= D(v(p)). Considering Bk~ as an operator in L2(k, p), we 
have: 

(i) Bk~ is closed, unbounded, and not self-adjoint. 

(ii) Re(f, Bk~f) <~ O, i.e., a(B~) lies in the left half-plane. 

(iii) a(B~) is symmetric with respect to the real axis; if ~b(k, p) is an 
eigenfunction belonging to the eigenvalue 2, then ~b(-k, p)* is an eigen- 
function belonging to ,i*. 

An important property of the spectrum o-(Bk~ ) is described by the 
following: 

Proposi t ion 3.1. For all k e R 3 and e e [0, 1 ], a(Bk~ ) consists of a 
continuous part F : =  {-[ikep/po +v(p)] ;  p e R  3} and a discrete part of 
the isolated eigenvalues with finite multiplicity. These eigenvalues can 
accumulate only at the boundary of F. 

Proof. We consider the operator Bk~ as a perturbation of the 
operator A k~ = - -v (p ) -  ikap/po with a compact operator K. The spectrum 
of Ak~ is purely continuous and a(Ak~)= 1". The theorem of Schechter (19) 
ensures that the essential spectrum of Bk~, i.e., 0"ess(Bk~ ) is equal to 
aess(A~), this last being identical with acont(Ak~), i.e., with F. As the 
operators Ak~ and B~ are closed, a general theorem states (ref. 20, p. 238) 
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that the semi-Fredholm set of B~ = A~, + K is equal to the semi-Fredholm 
set of the operator A~,. The semi-Fredholm set of the operator A~ is 
characterized as follows. Let S(ke)={z~C: z=-v (p ) - i kep /po  for 
peR3}.  Then SF(ke )=  C/S(ke) is the semi-Fredholm for Ak~ and also for 
Bk~. The S(ke) is a closed set, and thus SF(ka ) can be written in general 
as Sg(k,~ ) = S~(ke)  + S2F(ke), where both the S~(ke)  are connected and 
S~(ke)  contains the half-space {z: Re z>~ 0}. As Bk~ is closed, the nullity 
and deficiency of Bk~ -- z are both constants on the connected components 
of SF(R~;), except for isolated values of z. It was shown in I that Bk~ 
generates a contraction semigroup on L2(k, p) and it follows then that both 
the nUllity and deficiency of Bk~ --z  are zero for {z: Re z > 0}. This means 
of course that they are zero for z e  S~(ke)  except for some isolated values 
of z. We see, then, that, except for these values of z, S~F(ke) is contained 
in the resolvent set of the operator Bk~. This shows that these exceptional 
values of z e S ~F(ke) can be only eigenvalues of finite multiplicity. I 

4. RESULTS F R O M  THE P E R T U R B A T I O N  T H E O R Y  

Information concerning the local behavior of the eigenvalues and 
eigenfunctions of the operator Bk~ for small values of Ikel follows from the 
theory of analytical perturbations.(2~ In order to apply this theory to the 
operator Bk~, consider a family of operators B.r defined as 

B.~ = L + TV (4.1) 

where 7 s C and I have introduced a bounded in L2(p) operator V, 

kp 
V= (4.2) 

IklP0 

It is easy to check that for 7 = - i l k e l  the operator By is equal to the B~. 
For all 7, D(BT)= D(L) and one sees that for every ~b e D(L), B~[~b] is a 
vector analytic function of 7. Thus, the B7 form an analytic family of the 
type A in the sense of Kato. (2~ Moreover, for 7 real, By are self-adjoint. 
We can then apply the Kato-Rellich theorem (ref. 21, p. 22). 

T h e o r e m  4.1. (Kato-Rellich) Let By be an analytic family in the 
sense of Kato for 7 near 0 that is self-adjoint for real 7. Let 2 o be a discrete 
eigenvalue of multiplicity m. Then, there are m not necessarily distinct 
single-valued functions analytic near 7 =0 ;  21(7) .- -,~m(7), with 2i(0)= Xo, 
so that 21(7)..-)Lm(7) are eigenvalues of By near )~o for 171 small enough. 

Theorem 4.1 ensures the existence of eigenvalues of the operator Bk~ 
for sufficiently small Ikel. We see that eigenvalues of the operator L cannot 
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suddenly disappear if the perturbation iekp/po is turned on. These pertur- 
bed eigenvalues can be calculated by the standard perturbation expansion 
and this is done in Appendix A. These results make it possible to prove the 
following refinement of this general theorem: 

T h e o r e m  4.2. Let 2j(ke) and ej(k~) denote the eigenvalues and 
corresponding eigenfunctions of the operator Bk~. There exists 6 > 0 such 
that for Ikel ~< 6 the following are fulflled: 

(i) The eigenvalues {2j(ke) 5 }j=~ are semisimple and the corre- 
sponding spectral projectors Pj(ke)  can be represented as 

mj 

P j ( k e ) f =  ~ (e,(--ke),f)L2~p) e,(ke)  (4.3) 
1 - - 1  

where mj is the multiplicity of the eigenvalue 21(ke ), 

( e l ( - k e ) ,  ej(ke))L~(p I = 6~ (4.4) 

)~j(ke) and ej(ke) have expansions 

~ �9 n )~j(ke)= zj,, [u u ] (Ike) (4.5) 
n = 0  

ej(ke) = ~ ej~[p, k/k, u~](ike) " (4.6) 
n = 0  

):j,, are functions of hydrodynamic velocity u ~ alone, )oj2 > 0, and ejn are 
functions of p, k/k, and u ~. 

(ii) a(Bk~)c~ [ - - (2 /3)vl ,  - -(1/3)vl]  = ~ .  

Proof. The point k =  0 is an exceptional point of the operator Bk~, 
but at k = 0 ,  B o - L  is a symmetric operator, and thus a general 
theorem (2~ on the perturbation of symmetric operators ensures that the 
eigennilpotents Dj(ke) vanish identically because they vanish for k = 0. This 
means that )oj(ke) are semisimple. For k C0  the fivefold degenerate zero 
eigenvalue of L splits into several groups 2 i each of multiplicity mi such 
that Z mj = 5. The same is of course true for the adjoint operator Bk~ = 
B k~ =_L + ikpe/po. If ~bj(ke) is an eigenfunction belonging to the eigen- 
value 2j(ke) of the operator Bk~ then ~bj(-ke)  is an eigenfunction belonging 
to the eigenvalue 2j(ke)* of the adjoint operator/~k~. We can write, then, 

(q~,,(-ke), B~bj(ke))L2r ) --- 2j(ke)(O,,(-kc), q~j (ke))L2(p ~ 

= 2,(ke)((~,(-ke),  q~j(k~))L2(p ) 

822/57,'1-2- 4 
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and we see that for 2 j (ke)~ 2,(ke) 

(~b,(-ke),  ~bj(kt))L2(, ) = 0 

There are biorthogonality relations for eigenfunctions belonging to different 
groups of eigenvalues. As the )-y(ke) are semisimple, we can choose in the 
subspace belonging to each Py(k~) eigenfunctions in such a way that we 
have also 

(~b,(-ke),  ~b+(ke))L2(p ) = 6./, n, j = 1,..., 5 

Note that for purely imaginary k these relations are equivalent to the state- 
ment that eigenfunctions of the symmetric operator can be chosen as an 
orthonormal basis. For  k real, as it is in our case, such relations are true 
only for sufficiently small k~ when we can apply the Kato-Rellich theorem. 

With the help of such a basis we can express each of the Pj(ke) as 

m i  

P j ( k e ) f =  ~ (el(-ke),f)L2<o)et(ka) 
l = 1  

Theorem 4.1 ensures that there exists 6 > 0 such that for ke < 5 2j(ke) and 
ej(ka) are analytic functions of ke and we can expand them into series 
in this parameter; coefficients of these expansions are calculated in 
Appendix A. 

The zero eigenvalue of the operator L is separated from the rest of the 
spectrum by a gap with width V x. We see that by taking the value of 
sufficiently small we can confine the first five eigenvalues of the operator 
Bk~ to the circle in the complex plane with radii less then (1/3)vl and the 
rest of the spectrum to the half-space Re().)< - ( 2 / 3 ) v l .  II 

All of our considerations have been done in an arbitrarily chosen 
frame of reference and this choice set a definite value of the hydrodynamic 
four-velocity u ". In the following I suppress the dependence of 2j and ej on 
u ~ so long as it leads to no confusion. 

5. GLOBAL BEHAVIOR OF E I G E N F U N C T I O N S  

The information concerning the local behavior of eigenfunctions of the 
operator Bk~ for small values of ke is not sufficient to show boundedness of 
the resolvent (z--Bk~) -1 for z from the strip {z: - f l~<Rez~<0}.  This we 
will need if we want to obtain an explicit form of the solution to Eq. (3.1). 

The aim of this section is to prove that for large k~ the spectrum of the 
operator Bk~ is bounded away from the imaginary axis. In fact, we will 
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prove even more, namely, that for ke ---, Go the discrete part of the spectrum 
a(B~) moves toward continuum (see ref. 15 for nonrelativistic results). 

We first consider the eigenvalue problem for the operator B~, 

I - v ( p ) -  ike___pp + K] ~j = )~(ke)~j 
Po 

(5.~) 

Taking a scalar product of this equation with ~bj, making use of the fact 
that II~bjllL=(p)= 1, and then forming the real and imaginary parts of the 
result, we obtain 

, ikp 
I Im2j(ke) l=  fd3p~y(p)~-o~bj(p) ~<lkel (5.2) 

Re 2j(ke)= f d3 p~b*(p)[-  v(p)+ K]  q~j(p) (5.3) 

As - v ( p ) + K  is nonpositlve definite, we see that Re[,)~j(ke)]~<0. 
Moreover, for k # 0, if we assume that qlj(k~) = Y~=, cg,(ke)~b ~ where ~o 
K e r [ - v ( p )  + K],  then Eq. (5.1) takes the form 

I iekp ] 5 
Po 2j(ka) 2 c~Jz(ke)~ b ~  (5.4) 

l = 1  

The only solution of Eq. (5.4) has the form ~j~(ke)=0 for all j, l =  1 ..... 5. 
We see that for ke r 0, ~bj = ~ =  1 c~jt(ke)~ b~ cannot be an eigenfunction 

of the operator Bk~. From the fact that - v ( p ) +  K is a strongly negative 
operator for ~b r K e r ( -  v(p)+ K) we can conclude that 3Cj > 0 such that 

Re[2;(k~)] ~< - C~ (5.5) 

for all 2j from the discrete spectrum. 
For a more detailed description of the a(Bk~) for large ke we need the 

following lemma. 

Lemma 5.1. For R e 2 > - l , ~ ] 0 , 1 ] ,  

lim HKA~k~ II =0 (5.6) 

where 

= [  - vt"t- i k" t57t 
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Proof. We make use of the classical results that a compact operator 
transforms weakly convergent sequences into norm converging ones. For 
every k �9 R 3 and 2 such that Re 2 > - 1 the operator K A ~  is compact as 
a composition of a compact and bounded operators. We assume then that 
there exist sequences k, such that k~ ~ oo as n --+ oo and ~b k" with []~bk"[[ = 1 
such that 

I[KA ~k~@k~ L~p) ~ 0  (5.8) 

It follows then that A,~k~b k~ 4~0 weakly, but we have the estimates 

[ f  ~1/2 1 k n  - -  2 V~L~(p)(~9, Axk,,~O )L2(p) <~ 1~912 IA~,,,~I d3p] (5.9) 

and according to the Lebesgue theorem, ~22) we see that 

lim fd~p [~t 2 ]A;~k~ 2 = 0  (5.10) n ~  

This is a contradiction, which proves the lemma. | 

After these preparations, we can prove the following 

T h e o r e m  5.2. For  every 0 < / 3 <  1 there exists k s such that for 
ke > k s the half-space Re 2 > - /3  is free from eigenvalues. 

Proof. We transform Eq. (5.1), 

[A;~k~ + K] (~;. = O, 0~ e D(A~.k~) 

into the following equivalent one, 

K A ~ p ; .  =lpx, ~x e L2(p) (5.11) 

Calculating now the norm of both sides of this equation, we find that 

but we have that 

and according to Lemma 5.1, l i m k ~  []KA~k~II =0.  Thus, we can choose 
sufficiently large k~ such that for k~ > k s, [[KA~k~ [[ < 1 and Eq. (5.12) has 
no solution in L2(p). II 

The dependence of the constant k~ on /3 follows from the fact that 
]]KA;~k~ II depends on the lower bound on Re 2. 
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We have shown that for k r 0 for each )~i belonging to the discrete 
spectrum of the operator Bk~ there exists Ci > 0 such that Re 2i(ke) ~ - Ci. 
We show now a much stronger bound: 

P r o p o s i t i o n  5.1. For all k~ > 0  there exists C~ > 0  such that for 
all k~ �9 [k~, k~], a(B~) r {;t: Re 2 > - C~ } = ~ .  

Proof. Assume the contrary, i.e., that there exist k o �9 [k , ,  kr and 
sequences q5 ~ and 2~ such that 

lim Re[).~(k0e)] = 0 
1 / ~  o o  

In such a case we have also that 37 such that 171 ~< k0e and 

lim [Im )~,(ke)] = 7 
n ~ o o  

This follows from the fact that Im[2,(k0e)]  �9 [ -koe ,  koe] and can be 
considered as a sequence of the elements of the compact set and we can, 
then, dropping to the subsequence if necessary, choose a convergent sub- 
sequence. This in fact shows that the spectrum of the operator Bk0 ~ has an 
accumulation point at )~ = iy. Such a result contradicts Lemma 3.2, which 
says that for all k �9 R 3 the eigenvalues of the operator Bk~ can accumulate 
only at the boundary OF of the continuous part of the spectrum. | 

From Proposition 5.1 and Theorem 5.2 we have the following simple 
result. 

C o r o l l a r y  5.1. For  all k > 0  there exists C > 0  such that a(ke)c~ 
{2: Re )~ > - C }  = ~5. 

Proof. Theorem 5.2 ensures that for ke>k~e,  ~(Bk~)c~ 
{)o: Re )~ > - f l }  = ~ .  According to Proposition 5.1, if we take k > k~, then 
it is enough to choose C=min{/3,  C~}. | 

6. T H E  R E L A T I V I S T I C  B O L T Z M A N N  S E M I G R O U P  

We can now formulate and prove the main theorem providing an 
explicit form of the semigroup which solves the LRBE. 

T h e o r e m  6.1. Assume that or(g, O) satisfies (2.10a), (2.10b). Then: 

(a) The operator 

1 
B~ = - P v + - L  

Po 
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for all e e ]0, 1] generates a strongly continuous contraction semigroup on 
Hz(r, p), l>~ 0, given explicitly as 

1 (, 
exp(tB,)f(r, p) = (2g)3/2 j d3k exp(ikr) 

xexp ~Bk~ f ( k , p )  (6.1) 

(b) The operators B~ for all k �9 Ii ~ generate a strongly continuous 
contraction semigroups on LZ(p) and 3~ ,  ~j, ~2 such that the following 
are fulfilled for all f �9 L2(p): 

(i) For k~<c~ 1 
5 

+exp(~Ak~)f +exp(~)Z~(k~,~)f (6.2) 

where 2s(ke ) and ej(ke) are eigenvalues and eigenfunctions of the operator 
B~ and they have analytic expansions 

2 
2/(ka) = ~] 2j,,(ike)" + o(ke) 2 (6.3a) 

n = l  

2 

ej(ka) = ~ e;~(k /k ) ( i ke )  ~ + o(ke)  2 (6.3b) 
n = O  

2in are constants, with ,;ks2 > 0, e#, are functions of k/k only, and 

e i ( - k e )  , es(ke))L2(pl = g0, i, j =  1,..., 5. (6.4) 

(ii) For ke>(~l 

exp (~ Bk~) f =exp (~ Ak~) f 

+exp (-~ ~z) Z2 (ke, ~) f (6.5) 

where 
ikep 

Ak~ = --v(p) + -  (6.6) 
Po 

1 f iy. Zj(k, t ) f ( k ) =  l i r a  ~ ei'WZ(k, -flj + i7) f (k )  d7 (6.7) 
-- z'y 
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where, for 2 e C 

Z(k, 2 ) = ( 2 - A ~ , )  I[I-K()o-Ak~,) -13 1K(2-Ak~) -~ (6.8) 

and 
IlZ(k, t ) f (k ,  p)[I L2(p)~< C tlf(k, p)N L2(p) (6.9) 

The constant C is independent of k and t. 

ProoL The first part of this theorem was given in I. The proof 
follows closely that given for the nonrelativistic Boltzmann equation by 
Nishida and Imai (13) and Elis and Pinsky (12) and can be easily extended to 
the case e e ]0, 1 ]. I present here the proof of part (b). 

We use the contour integral representation of the semigoup 
exp[(t/e)B~] valid for any f e D(Bk~ ), 

exp (~Bk~) f(k, P)= ff--~i fc eXp ( ~ ) 

X ( Z - - B k e )  - 1  f (k ,  p) dz (6.10) 

where C is a contour which lies to the right of a(Bk,) and extends from 
-Joe to ioo. For ke<61, where we take 61 small enough to apply 
Theorem 4.2, we can make the following transformation of the contour 
integration in Eq. (6.10): 

27ri c exp (z-B~) lfdz 

- Jc (z-Bk~)-lfdz 

1 
+ ~ . ) i m ~  f ~1-# exp - ( / 31+ i7 )  ( - / ~ l + i y - B k , ) - ~ f d 7  

(6.11) 

C~ = {zsC: z=6e ~, Oe [0,2rc[} with 6e ]�89 ~v,[ contains the first five 
eigenvalues of the operator B~. We can choose also fll e ] �89 2 ~vl[, and, 
as shown in Theorem 4.2, a(Bk,)c~ {z: z = --fl + i7; /~ =/~1, 7 e R} = ~ .  We 
see then that for a given ke < 6~ the integral over Ca in Eq. (6.11) splits into 
n~ integrals over small circles, each encircling only one eigenvalue of Bk,; 
n~ ~< 5 is the number of distinct eigenvalues of Bk~ in Q .  These integral can 
be easily performed and we obtain 

2~zi exp (z-Bk~)-lfdz 

= exp P t ( k e ) f  (6.12) 
l = 1  
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where Pt(ke)  are the spectral projectors on the subspace corresponding to 
the 2t(ke). It follows from Theorem4.2 that these projectors can be 
represented as 

mj 

Pl(ke) f=  ~ (etj ( - k e ) ,  f)L2(p) e~(ke) 
j =  1 

mj is the multiplicity of 2j(ke). 
We can write 

with 

- (1/27ti) fc6 exp(zt/e)(z- Bke) -1 f ( k ,  p) dz 

5 

= ~ exp[2/(ka)t/e](ej(-ke), f)L2(p) ej(ke) 
j = l  

(6.13) 

(ej( - ke), e;(ke))L2(p ) = 6jl 

We have shown that )~j(ke) and ej(ke) are analytic functions of ke near 
zero; thus, taking 6~ sufficiently small, we fulfill (6.3a), (6.3b). 

In the second integral in Eq. (6.11) with the help of the operator 
identity ( z - A - B ) - ~ = ( z - A )  1 + ( z - A )  ~ B ( z - A - - B )  1we obtain 

(1/2~) ~ ~ +J~ e x p [ ( - i l l  + iT)t/e](-ill + i? - B k ~ )  - 1  f (k ,  p) dz 
fll iv 

f flI + i 7  
= (1/2~) exp[ - (ill + iT)t/e[(-ill + i7 - Ak~) -~fd7 

flI i7 

+ (I/2n) exp(--ill  t/e) Z ( - i l l  + i7, ke)fd7 
--oo 

(6.14) 

where 

Z(z, ke )=(z -Ak~)  l [ I - K ( z - A ~ ) 1 ] - l K ( z - - A k ~ )  ' (6.15) 

The reason for such a splitting is that the first integral on the rhs of 
E. (6.15) can be explicitly done, with the result 

f 
0o 

(1/2~) e x p [ ( - f l l  +i'/)t/e)](-fll +iT--Ak~)- l f  d7 
--oo 

= exp(Ak~ t/e) f 

-- exp{ [ -- v(p)/e + ikp/po] t } f (k ,  p) (6.16) 
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The norm of the operator Z(z, k) can be estimated for z = - f l  + i,/r a(Bk~) 
a s  

II/(z'k)ll~< (P-~)~+ ~ - P 0 /  J 

x IIK[[ II[I-K(z-A~,:)-I] irl (6.17) 

The operator K(z-Ak~) 1 is compact for z Ca(Ak~.) as a product of a 
compact and bounded operators. Thus, [ I - K ( z - A k ~ )  1]-1 is bounded 
provided that 1 is not an eigenvalue of the operator K(z -A~ )  1. This 
condition is equivalent to the requirement that z r a(K+ Ak~)-- a(Bk~). 
Note for completeness that if z r a(Bk~), then also z r a(Ak~). Denoting the 
[[KI[ H [ I - K ( z - A ~ )  1]-'ll by C', we obtain 

IlZ(z, k~)ll ~ C' [(/~-1)2 + ( ? - k P e ~ 2 ]  1 ~o : '  A (6.18) 

We see then that 

foo exp(itT/e) l IZ(-f l l  + i7, ke) f (k ,  P)I] L~(p) d7 
- o o  

is absolutely convergent for fit e ] �89 2 , 3 h [ and if we define 

f 
o o  

Zl(t/e, ke) f (k ,p)= Z( - f l l  +iT, ke ) f (k ,p )d  ~ 
o o  

then 

with constant 

11Zl((~, ka)fl] L~Ip> ~< C IIf!l ~(p) 

(6.19) 

(6.20) 

which can be chosen independent of k, t, and e. 
(ii) For ke > ~1 we know that ~I* > 0 such that for all fi < #, a(Bk~ ) c~ 

{z: --fl+iT, ~ =~5. Choosing 0<f12 <p ,  we have 

(1/2~i) fc exp(zt/e)(z- Bk~)-1 f (k ,  p) dz 

= 1/2~) exp[ - ( /?2  +iT)t/e](-fi2 +iT-Ak~)- l fd7  
o e  

+ exp(fl2t/e)(i/2~) exp(iTt/e) Z(-132 + iy)fd7 (6.21) 
o o  
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Ilexp(tgDII, ~ C~C Ilfll, + sup Irf(k, o )11L2(p))/( 1 + t) 5/4 (6.25C) 
k 

where the constant C~ depends on e only. 

(i) For f e Ht(r, p) 

lim Ilexp(tB~)fll,=O (6.25a) 
t ~ c o  

(ii) F o r f e H l ( r ,  p ) ~ L l ( r ,  L2(p)) 

Ilexp(tg~)fll, ~ C~(llf[Iz + Ilfl[cllr.c2(p)))/(1 +/)3/4 (6.25b) 

(iii) For f e H t ( r , p ) ,  r feLl(r ,  LZ(r,p)), and, [d3rd3pftpj=O , 
j = 1 ..... 5, ~bj e Ker(L), we have 
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Repeating now the same arguments as above, we obtain 

e x p ( ~ B ~ ) f ( k , p ) = e x p ( ~ A k , ) f ( k , p )  

IlZ2(t/e, k~)fll L2(p I ~< C II/llL2(p) (6.23) 

We have constructed a representation of the semigroup exp[(t/e)Bk~] for 
f e D(Bk, ) a dense subset of L2(p) and this semigroup is a contraction semi- 
group; thus, we can extend these results on the whole L2(p). I 

With Theorem 6.1 we prove the decay estimate for the solution to the 
LRBE with initial data f e  Ht(r, p). These solutions are defined as 

f~(r, p, t) = exp( tB,) f(r, p) (6.24) 

From the contraction property of the semigroup exp(tB~) we see that 

life(r, p, t)ll, ~< IIf(r, p)llt (6.25) 

More detailed information is provided by the following. 

T h e o r e m  6.2. For all e e l 0 ,  1] the solution to the LRBE with 
initial data f ( r ,  p) has the following decay estimates: 
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with 

ProoL According to the Theorem 6.1, we can write forfeHz(r, p) 

rlexp( t B~) f ll 2 

=ffd3kd3p(l+k2) z exp (~ B~0 f(k, p) 2 

mf d3plfkg<6~l (1-{-k2) / exp(~BkOf(k,p) 2d3k 

x (ej(-ke),  f(k, P))L2(p} ei(k8) 

+ exp (~ Ak0 f(k, P) + exp ( -~  fl 0 

xZl (~,ke).f(k,p) 2}]=Ii + I2 

I2 can be estimated as follows: 

12 ~< e -2,/e 2 ]].fl[1 q-e-2{t/'e}#'C2 Ilfll~+2Ce (,/~}(*+e~} iifH2 

For I3 we can write 

I3=fd3pfke>61 d3k(l+k2) l exp(~B,Of(k,p) 2 

+exp(-~fl2) Z2(~,ke)f(k,P) 2 

~<exp - - t  llfHe+exp -2-/~2 Ilfrl 2 
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We see that the main problem is to estimate the I 1 . To this end, we observe 
that 

and 

for V k # 0  

5 

fk d3k(1 +k2) ' Y, 
g<61  j = l  

( e j ( -ke ) ,  f (k ,  p))L2(p)~< ]If[I, < oo 

Applying then the Lebesgue theorem (22) to 11, we obtain 

lim 11 = 0 

and it follows that 

lim Ilexp(tB~)fllt ~ lim (I~ +12 + 1 3 ) = 0  
t ~ o o  t~c<3 

This proves (i). A function f e H l ( k , p  ) can be concentrated at k = 0  
and without additional information concerning the behavior of 
(ej(--ke),f)L2(p ~ for small k we cannot obtain stronger bounds on the 
decay of f ( r ,  p, t). Such an assumption is provided by (ii). If f(r ,  p )e  
Hl(r , p) c~ Ll(r, L2(p)), it means that sup~ Y~]: 1 ( e j ( - k e ) ,  f)LZ(p) < O0. This 
allows for improving the estimate for Ii. Denoting 

-A2(ke)  2= max {Rel-2j(ke)], j =  1,..., 5} 
ke < 61 

we obtain 

Ika  <: 61 

5 

d3k(l + k2) ' ~ exp{2 Re[-F./(ke)] t/a} 
j ' = l  

• I (e j ( -ka) ,  f (k ,  p)[ 2 

<~Ik d3k(1 +k2)Zexp(-2A2k2at)Ilf(k, p) 2 IL ~2~.~ 
a < (51 

~<fk d3k(1 +k2)texp(-2Azk2et) 
~<cS 1 

• sup [(1 +k2)  l [If(k, p)[[ ~2~p)] 
k 

~< C(1 + te) -3/2 Hf(r, p)lb ~,,L2~p)~ 
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For e ~ 0 we can write 

C(1 q - l e )  3 / 2 ~ < C c ( l + t )  - 3 / 2  

We can write also I1 + 12 ~< C(I + i') -3/2 IPfl]l and this gives (ii). 
It follows from Theorem 6.1 that 

2 
ej(ke) = Y~ ej,,(ike)" + o[(ke) 2] 

n=O 

The assumption made in (iii) ensures that 

( e j ( - k e ) ,  f (k ,  P))L%)lk=o = 0 

sup [Vk(e;o, f (k ,  p))L2(p)l < 09 
k 

We see then that for ke < ~,, 

(e / ( -ke) ,  f (k ,  P))L%) ~< keg(k) 

where SUpk Ig(k)] < oo. It is possible then to improve the estimate of 11 and 
we obtain 

11 ~ < C f  d3k(l +k2)~exp(-2A2k2et)k2e2 Ig(k)] 2 
Jk ~:<61 

Ce 2 Ie~<a ' d3k k 2 exp(-2Azk2et)  

x [ sup (1 +k2) t [g(k)l 2] 
ke, < 61 

~< C~(1 + t) 5/2 [sup [If(k, p)NL2(p)] 2 
k 

As/2  + /3  ~<C(1 + t )  -5/2 IIf[l~, we obtain (iii). | 

Note that the decay estimates for the relativistic Boltzmann equation 
are in fact very similar to those obtained for the nonrelativistie Boltzmann 
equation by Nishida and Imai. (~3) 

7. THE H Y D R O D Y N A M I C A L  A P P R O X I M A T I O N  

For sufficiently long times t > max{efl~ ~, eft2 t } the dominant part of 
the solution to the LRBE has the following form: 

f~(k, p, t )=  ~ exp )v(ke) 
j =  1 

x (ey(-kg),  f (k ,  p, 0))L2(p ) ej(ke) (7.1) 
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From the perturbation expansions of 2j(ke) and ej(ke) (Appendix A) it 
follows that up to terms of second order in ke we can write 

)v(ke) = ike,~j l  - -  ) u 2 k Z e  2 q-  o[-(ke) 2 ] (7.2a) 

5 

ej(ke) = ejo + ike ~ Bzjeto + ikeO/ + o(ke) (7.2b) 
/ = i  

All {0/}]=l are orthogonal to No = {ejo}]= 2. Explicit expressions for the 
coefficients in the expansions (7.2) have the form 

5  jo) 
2J2 = -(eJ~ ~ok (QLQ)-i kppok ej~ 

= ~ ' - (2 /~-2 t1  ) l(ejo, (pk/pok)(QLQ) ~(kp/pok)eto), B)I 

(7.3a) 

(7.3b) 

i ~ l , 2 j l ~ 2 t l  

otherwise 

(7.4) 

Q is a projector on the subspace orthogonal to No. These eigenfunctions e/o 
depend on p and the scalar product ( o ,o )  is understood as the scalar 
product in L2(p). 

We define a set of auxiliary hydrodynamic variables ni(r , t) with a 
help of the eigenvectors e;o as 

We see that 

ni(r, t) = (ejo,/(r,  p, t)) (7.5) 

5 Et 
f ,(k,p,t)= ~ exp -2j(kr nj(k, 0 )+ ike  

j = l  '~ 

5 

x ~ BJln,(k , 0)+ ika(~j,f(k, p, 0)) 
/ = l  

x ejo + ike ~ B)nejo + ikeOj + o(k~) (7.6) 
n = l  

In order to introduce the hydrodynamic approximation, we define a set of 
differential equations for variables ni(r, t), i=  1 ..... 5, 

5 

c?,ni(r, t )=  ~ A~(V)~nj(r, t) (7.7) 
j 1 
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where 

and 

A~(V),,m = (270 3/'2 f d3k[exp(ikr) ] A~(k),m (7,s) 

A~(k) .... f (1/e)[ike2"l-(ke)2 2"2]' n=m 
= ). 1 2 (7.9) 

[ - - (  .i --)~ml)Bnm(ka) , n#m 

It is easy to see from the definition of B~ that A~(k),j = A~(k)j~ for i#j .  The 
following proposition describes the behavior of the eigenvalues of the 
matrix A~(k). 

P r o p o s i t i o n  7.1. Denote the eigenvalues of the A~(k) as AS!(k ), 
j =  1 ..... 5; then: 

(i) For all k ~ R  3 and e e l 0 ,  1] 

(ii) 
of k and have expansions 

A~ (k ) -- ik;~j~ -k2~;~j2 + o(k2~) 

with 22. given by Eq. (7.2a). 

(iii) Sfl3 > 0 such that for k > di 2 

Re[A~ (k)] ~< 0 (7.10) 

362 > 0 such that for k < (~2 all these A~(k) are analytic functions 

(7.11) 

Re[A~(k)] ~< - fl3/e (7.12) 

Proof. Observe that the eigenvalue problem for the matrix A~(k) is 
equivalent to the problem of finding in the space No the eigenvalues of the 
operator V defined as 

_ -1 k p ]  V = P [  ik---~P +k2 kpPok pok ]P (7.13) 

where P is a projector on the No, and Q = 1 - P. To see this equivalence, 
it is enough to note that the matrix representation of the operator V 
written in the basis {ejo}]= 1 is identical to A~(k). The operator (QLQ) 
is not positive and we see immediately that Re[A~(k)] ~< 0, which proves (i). 

The eigenvalues of the operator A~(k) depend only on k and without 
loss of generality we can choose k ]1 ~. The operator V then simplifies to 

V= P [ - i k  Pz + kzePz (QLQ) l Pz ] p (7.14) 
L Po Po PoJ 



222 Dudyhski 

For k small enough we can treat 

as a small perturbation of the operator ik(pz/po). Applying the 
Kato-Rellich theorem to this case, we see that there exists ~2 > 0 such that 
for k < 82, A~ (k), j = 1,..., 5, are analytic functions of k. Now using the per- 
turbation expansions with {ejo}]= 1 taken as eigenfunctions of the operator 
P(pz/po)P, we obtain (ii). We have 

\Po  -~o/P c~N~176 

For k r O, V(pofU 2) = ikpzf 1/2 and this shows that for k r O, pof~/2 cannot 
be an eigenfunction of the operator V. We note now that if ~b k is an eigen- 
function of V for k r 0 and ~b k = pof~/2 + 0 with (~, pofU 2) = O, then 

Re(~b, VO)=k2e( o'pz(QLQ)po ~P~o)<<'Po - k2aT(k) (7.15) 

If ke > 82, then 

7(k) k2a >~ ?(k) c~::/a = #(k)/e (7.16) 

We show now that there exist k o and/~0 such that for ke > k 0,/~(k) > #. For  
large enough ke we can write V in the form 

V=k2eP] -'ip~ +pZ Po lPZ]poj P 

and treat the first term as a small perturbation of the operator 

The eigenfunction belonging to the zero eigenvalue of V' is pof~/2. 
Denoting the corresponding eigenvalue of V by A o, with the help of a 
perturbation expansion we obtain 

1 1 Ao=ikAm--Ao2+ Ao3+o[ (ke )  1] (7.17) 
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with Ao2 > 0, and for the other four eigenvalues 

2 2 R e [ A j ( k ) ] ~ < - ~ j k  e ~ < - ~ k o  2 
8 

We see that, taking k o sufficiently large, there exists /~ > 0 such that for 
ke > ko, Re(A~ (k)) ~< -/z.  

Choosing now f13 = min(/l, #(k); k ~ [62/~, ko/e]), we obtain (iii). | 

Our aim now is to solve the hydrodynamic equation (7.7) and show 
that this solution converges to the solution of the LRBE as t ~ oe. Let us 
prove first the following result. 

T h e o r e m  7.1. For ni e H2(r), i =  1 ..... 5, there exist global in time 
solutions to Eq. (7.7), ni(r, t )eH2(r ) .  The explicit form of these solutions 
reads 

Hi(r , t )  = (27z) - 3 /2  f [exp(ikr)]  ni(k, t) (7.18) 

and there exist c o n s t a n t s  6 2 > 0 and f13 > 0 such that: 

where 

and 

(i) 

(ii) 

For ke < c5 2 

nj(k, t)=exp[A~(k)t] nj(k, O)+ike ~ B]~n,(k, O) 
i ~ l  

5 
+ ~ exp[A~(k)t] ikeBj, n,(k, O) 

l=l  
5 

+ • exp[A;(k)t] Cj~(k, t) n,(k, t) 
n = l  

A ;  (k )  = ik2j l  - k 2 a d v 2  q- o ( k 2 g )  

IC}(k, t)j ~< Ck2e 

For ke > c52 

5 

nj(k, t ) =  ~ exp[(ik~)vi-k2e2j2)t] nj(k, 0) 

5 

+ exp(-f l3 t /e)  ~, 2'jl(ke , t/e) n,(k, 0) 
l = 1  

(7.19) 

(7.20) 

822/57/1-2-15 
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where 
112(ke, t/e)ll <~ C (7.21) 

Proof. To solve Eq. (7.7), we use the Laplace transform in time and 
the Fourier transform in r. These result in the following matrix equation: 

5 

[ z I -  A~(k)]~ ns(k, z) = n,(k, 0) (7.22) 
j = l  

Its formal solution has the form 

5 

n~(k,z)= ~ [ z I -  A~(k)]~ l ns(k ,0)  (7.23) 
j = l  

The time dependence of the solution is determined by 

ni(k, t) = (2~i) 1 fc dz exp(zt) 

5 

x ~ [ z I - A ~ ( k ) ] o  ~ ni(k, 0 ) (7.24) 

where the contour C lies to the right of the spectrum of A~(k) and extends 
from - ioo to ioo. For sufficiently small k such that k~ < 62 we can calculate 
perturbatively [ z l - A ~ ( k ) ]  -1 and then with A~ from Proposition 7.1 we 
have (i). 

For ke > b 2 we split the A~(k) as follows: 

A;(k) = C~(k) + D~(k) (7.25) 

where 

C fik ) o = ( ik2il - k2~s u (7.26) 

We can write 

[ z I -  C~(k) -  D~(k)] 1 

= [ z I -  C~(k)]--1 

+ [ z I - C , ( k ) ]  ~ { I - D ~ . ( k ) [ z I - C ~ ( k ) ]  ' } -~ 

x D~(k ) { z I -  C~(k)] ' (7.27) 
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With Eq. (7.27) we can rewrite Eq. (7.24) as 

5 

1 f dzexp(z t )~  [zI-C~(k)]O.~nj(k,O) ni(k, t ) = ~  i c j=~ 

+ ~ - ~ 3 / ~  i~. dTexp - - - + i ? e  t 

) jl  
x ~ - +i s I-C~(k) 

j = l  

The first integral can be easily calculated, with the result 
5 

f dzexp(z t )~  [zI-C~(k)]~lnj(k,O) 
C j = l  

= exp[(ik2t~ - k2s2,2)t 3 n,(k, O) 

The second integral can be written as 
3 

exp[-(fl3/e)t] Z(ke, t/s)tj nj(k, O) 
/ =  1 

where 

= 1  1 

E( 1,} -1 x - - - + i y  I-C~(k) 
/ 

The matrix 
{I-- D~(k)[( --/~3/8 -~ i7)I-  C~(k)] -1 } -1 

is bounded as -fi3/e + iy (s a(A~(k)); moreover, for large k, 

rD~(k)[( - / L / ~  + i ~ ) I -  C~(k)] -1 ] . , .  I < C 

(7.28) 

(7.29) 

(7.30) 

(7.31) 
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The integral in Eq. (7.31) is then absolutely convergent and defines a 
bounded matrix operator. It is easy to estimate now 

]lni(r, t)llH2(r) =I  f ( l + k2)2 lni(k, t)12 d3kll/2 < oo (7.32) 

This shows that the set (ni(r, t)}~_ 1 is a solution Eq. (7,7) in H2(r). | 

An important property of Eq. (7.7) is given by the following result. 

T h e o r e m  7.2. The operator A~(V) for all e e l 0 ,  1] generates a 
strongly continuous contraction semigroup on ~ 2 ( r ) =  X]= 1 H2(r) �9 

ProoL The domain D(A~(V)) of the operator At(V) is dense in/~2(r) 
and it is enough to show that for ~ > 0 

ik [ _ A ~ ( V ) +  ~/]-~ll ~<r (7.33) 

then a standard argument (see Kate, (2~ p. 479) leads to the conclusion that 
A,(V) generates a strongly continuous semigroup. For q~ �9  we have 

{ll [ - A ~(V) + ~I] -1 ~b Ik/~2(r) } 2 

5 

=fd3k(l+k2) 2 ~ I { [ - A ~ ( k ) + ~ I ]  ~r (7.34) 
j = l  

The matrix ( - A , ( k )  + 31)-~ is symmetric for all k �9 R 3 and for every k we 
can find a unitary matrix Sk such that 

Sk(--At(k) + 31)-~)S~- = E(k) 

and 
E(k)ij = (-A~(k) + ~) ' 6~ 

Denoting ~j = (SkO)j, we can write 

5 5 

I [ ( - A ~ ( V ) + # I ) - '  ~b]jl 2= ~ I [ ( - A ~ ( k ) + ~ )  a #Jy(k)]] 2 
.j = 1 /= 1 

We can rewrite Eq. (7.33) in the form 
5 

Id3k(l+k2)2 ~ I [ ( - A ~ ( k ) + ~ )  ~ , j (k ) ] l  2 
j l 

5 

< f  d3k(1 +k2)  2 ~ ~ -2 i~j (k) l  2 
j - - I  

~< ~ - 2( limb I[ ~:~r))2 (7.35) 
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We have used fact that A~ (k) ~< 0 for k e 1t 3 and the unitary of Sk. To see 
the contraction, observe that for f e D(A~(V)), we have 

d 
d-~ Ilexp[A,(V)tl f)l/72(r) 

d 
= dt ((1 + k 2) exp[A*(k) t ]  f*(k) ,  

(1 + k 2) exp[A~(k)t] f(k))~2(k) 

= ((1 + k  2) exp[A*(k) t ]  f*(k),  

2ReEA~(k](1 + k  2) exp[Afik) t ]  f(k))z2(k ) ~<0 (7.36) 

This last inequality follows from the fact that the operator Re[A~(k)] is 
not positive definite, which was proved in proposition 7.1. 

The [?(k)  was defined as 

5 

L:(k) = X L2(k) (7.37) 
j = l  

We have shown that exp[A~(V)t] is a contraction on D(A~(V)), but as it 
is a dense set in H2(r), this extends on the whole space H2(r). | 

These two theorems imply the following. 

C o r o l l a r y  7.1. For all n(r)6/~r2(r), Eq. (7.7) has a unique strong 
solution n(r, t)E B2(r) and for all t>~ 0 

(i) Prn(r, t)lr~,2(r> ~< Iln(r)]]/~2(r } (7.38) 

(ii) lira [Ini(r, t)[I H~(~> = 0 (7.39) 
t ~ o o  

Proof. The main assertion of this corollary and (i) follow directly 
from the fact that exp[A,(V)t]  is a strongly continuous contraction semi- 
group on D2(r). Part (ii) can be easily deduced from Theorem 7.1 and the 
fact that for k r 0, lim,~ ~ ni(k, t ) =  0 a.e. | 

The precise meaning of the hydrodynamic approximation is given by 
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the theorem below. We define an approximation to the solution to the 
LRBE with initial data f(r, p)e H2(r, p) as follows: 

5 
H t f~ ( , p, t) ~ n/(r, t) ego(P) (7.40) 

j = l  

We have then the following result. 

Theorem 7.3. Let f~(r, p, t) be a solution to the LRBE with initial 
data f(r, p) e Hz(r, p) c~ Ll(r, LZ(p)) and let n(r, t) be a solution to Eq. (7.7) 
with initial data n+(r) = (eio, f(r, p)); then: 

(i) Hf~(r, p, t ) -  H r Us ( , P, t)][2 
C 

~< (1 + t) 5 / ~ 4  (l[f(r, p)t/z + Hf(r, p)ll LI(r,  L2(o)))  (7.41) 

(ii) If in addition we assume that Qf(r, p)= 0, then 

IIf(r, p, t ) -  H r f ,  ( , P, t)ll2 

C 
~< (1 + t) 7 / ~  (1If(r, P)lh2 + IIf(r, P)[I L~(r.L2(O)/) (7.42) 

Proof. We choose 6=min(61,63). Application of Theorems6.1 
and Theorem 7.1 leads to the following explicit expression for 
I[f~(r, p, t )- f f f (r ,  p, t)l12 

]lf~(r, p, t ) - f f f (k ,  p, t)ll~ 
5 

<<-fdaP{fk~<ad3k(l+k2) 2 / ~  {exp [~ 2/'ka) 1 

• (e/(-ke),  f(k, p)) e / (ke)-  exp[tA~(ke)] 

[ ' 1 x (ego , f(k, p)) + ike 2 1 B/+(em, f(k, p)) #o 
l = 1  

5 

- 2  
n = l  

5 

- 2  
m = l  

exp[A~(ke)t] ikB),(eno, f(k, P))Qo 

exp[A~(k~)t] C/m(k)(emo , f(k, p))ejo t 

+ exp [ -  (v(P)+ ~oP ) t l  f(k, P) 

+exp(  1,)z1 2 
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expI-( + 

-- ~ {expC--(ik~j1--k28~j2) t] 
] =  1 

x 2 k~, ~ (e;o, f (k ,  P))#o 
l ~  1 j /  

229 

(7.43) 

The second integral can be easily estimated as 

14 ~< C e x p ( - T t )  Jlf(k, p)JJ2 2 (7.44) 

where 7 = rain{l, fl2/e, )v2 62~, /~3/~}. 
In order to estimate the first integral in Eq. (7.43), we recall that for 

ks<d, the explicit forms of 2j(ke) and ej(ke), j= l , . . . ,  5, are given by 
Eqs. (7.2a) and (7.2b), and that of A~(k) by Eq. (7.11). Making use of 
these expressions, we can write the first integral, which denoted I as 
I = It + I~ + /3 ,  where 

]1 ~ C f d3 p {fk~<6 d3k(l + k2)2 exp~(ik).jl-k28Aj2) l] 

5 I 5 • ~ ike(~bj, f(k, p)) - ~ Cjm(k) 
I ' ~ I  n ~ l  

• (e,,0, f (k ,  p)) ejo + k2g2f(k, p) (7.45) 

(7.46) 
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I3 <" C f d3p {f~e<a d3k(l +k2)2 exp[(ik)~jt-k2a)~J2) 

5[  5 
• ~ ike(Oj, f (k ,p))-  ~ Cj.(k) 

j :  1 n =  1 

• (e.o, f (k ,  p))e.,o] + k2e2f(k, p) 

+ exp ( - - ~  t)  Z1 (ke,  ~) f (k ,  p) } (7.47} 

The I2 a n d / 3  can be easily estimated and we have 

I i ~ e x p  - H f (  ,P)I[2, i = 2 ,  3 (7.48) 

The remaining estimate of I1 can be obtained following the proof of 
Theorem 6.2(ii), and this results in the decay estimate (i). To prove (ii), we 
note that the additional assumption Qf(k, p ) = 0  ensures that terms 
(0j, f (k ,  p)) in Eq. (7.45) are equal to zero and the lowest order terms are 
of order k2e 2. This improves our estimate of I1 and we obtain (ii). | 

We have shown that A~(V) generates a strongly continuous contrac- 
tion semigroup on /~2(r), and as it is a dense subspace of L2(r )=  
X~=I LR(r), we can define a contraction semigroup exp[A~(V)] on the 
whole L2(r). This means that we now consider a weak solution of Eq. (7.7) 
and f o r f e L 2 ( r ,  p) we define a Navier Stokes semigroup N~(t) as 

N~(t)f(r, p ) =  exp[A~(V)t]j~ (e~o, f(r ,  p))es0 (7.49) 
j = l  l 1 

Obviously N~(t) is a strongly continuous contraction semigroup on 
L2(r, p). It is easy. to see the following extension of Theorem 7.3. 

T h e o r e m  7.4. 
data f(r ,  p) ~ L2(r, p) c~ Ll(r, Z2(p)); then: 

(i) I[f~(r, p, t)-N~(t)f(r, p) L2(r,p) 

C 
~< (1 + t) s / ~  [-Hf(r, P)]I C2<r,p) 

Let f~(r, p, t) be a solution to the LRBE with initial 

+ [If(r, P)II L~(,,L2(p))] (4.50) 
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(ii) If Qf(r, p) = 0, 

I[f~(r, p, t) - N~( t ) / ( r ,  P)ll LZ(r,p) 

C 
I-IIf(r, (1 -~ t) 7/4 PIll L2(r'P) 

+ ]If(r, P)llLl(r, L2(p)~] (4.51) 

ProoL Analogous to the proof of Theorem 7.3. 

Note that the decay estimates obtained in Theorem 7.4 are of one 
order in t better then those obtained for the solution of the LRBE with the 
same assumptions on the initial data in Theorem 6.3. This shows that 
indeed the hydrodynamic approximation determines leading terms in the 
solution to the relativistic Boltzmann equation for long times. 

It is worth noting that we have proved the existence of the solution to 
the hydrodynamic equations (7.7) assuming that the transport coefficients 
which occur in these equations are derived from the underlying Boltzmann 
equation. It would of course be interesting to know how much freedom is 
allowed for these coefficients without these general properties of the solu- 
tion being lost, but I will not try to answer this question here. 

One can try to improve the hydrodynamic approximation by taking 
into account the higher order terms in perturbation expansions of 2j(ke) 
and ej(ke), but it turns out that the corresponding differential equations 
are unstable. For example, it is easy to check that coefficients at terms of 
order (kg) 4 in the series for 2j(ke) are positive and for large k the solutions 
of the corresponding differential equations behave like exp(.~k4e3t) n(k, 0) 
with 2 > 0. The blowup of these solutions shows that the Navier-Stokes 
equations are very special and in order to improve them we need an addi- 
tional procedure of including higher order terms to prevent this kind of 
instability which is connected with higher order terms in the expansion of 
;~j(ke). 

Equations of relativistic hydrodynamics have been obtained for the set 
{ni(r, 0}7_1, which are called auxiliary hydrodynamic variables because 
usually such equations are written for a different set of variables, namely 

no(r, t) = (fU 2, f(r ,  p, t)) (7.52a) 

T~ t ) =  1/2 r (P~,fo , f (  , P, t)) (7.52b) 

T~176 t) = (pofU 2, f(r ,  p, t)) (7.52c) 

where the scalar product is again taken in L2(p). The ni(r, t) are linear 
combinations of these conventional hydrodynamic variables and by 
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suitable transformation of Eq. (7.7) we can obtain corresponding equations 
for no(r, t), T~ t), and T~176 t). For example, for the rest system of the 
gas we calculate the explicit form of the transport coefficients in 
Appendix B and after long but straightforward algebra we obtain 

T33 I- S~176176 ] 
~?tno(r, t ) =  sO33 VT(r, t)+ [_NSOO~---(TOO)2 FI~ Ano(r, t) 

T~176 1 
- NSOO o _ (TOO)2 A T~176 t) (7.53a) 

0,T~176 t ) =  -VT( r ,  t) (7.53b) 

U T33 TOO( ~ 33.) 1 g/,/o(r, / ) 
V,T(r, t )=  -LNTO o N S~ T 

--QS 033 T~ VT~176 t) 

F3 F 2 -- F 3 + ~-~ aT(r, t) + sO3~ V(VT(r, t)) (7.53c) 

where T(r, t) denotes a vector with components T~ t), k = 1, 2, 3. The 
coefficients S ~176176 S ~ T ~176 T 33, and N are defined in Appendix B and are 
connected with thermodynamic properties of the equilibrium state of the 
gas. An explicit form of the transport coefficients F i is also given in 
Appendix B. 

Note that these equations are in agreement with an exact form of the 
conservation laws derived from the Boltzmann equation. (1~ 

8. FLUID D Y N A M I C A L  L IMIT  

There is another interesting limit we can consider for the relativistic 
Boltzmann equation, namely the fluid dynamical limit, i.e., expansion of 
f~(r, p, t) in powers of e with appropriate rescaling of time variable and 
then letting e ~ 0. The nonrelativistic results are discussed in ref. 12 and 14. 
We apply the same strategy to the case of the LRBE. 

For the set of hydrodynamic variables ni(r, t), i = 1,..., 5, we define the 
Euler equations as 

0tni(r ,  t) = E(V)  U n i(r,  t), i, j =  1 ..... 5 (8.1)  

where 

E(V)nm = f d3 k exp(ikr) E(k)nm (8.2) 



kinearized Relativistic Boltzmann Equation 233 

E(k) is a diagonal matrix of the form 

E(k),,, = ik~,,~ 6~m (8.3) 

2~1 are given by Eq. (7.3a). 
It is now easy to see the following: 

Proposi t ion 8.1. The operator E(V) generates a strongly con- 
tinuous unitary group exp[E(V)t]  on 

5 

/ t~ ( r )=  X Ha(r) (8.4) 
i ~ l  

Proof. The explicit form ofexp[A(V) t ]  ~(r) for ~b~Hl(r) is  

{exp[E(V)t] ~b(r)}~ 

f d3k exp[(ik2nl + ikr) t ]  ~b~(k) (8.5) 

which shows immediately strong continuity and we see that 

j=l 

--]lr ~{r) (8.6) 

These results do not depend on the sign of t. I 

lit follows from Proposition 8.1 that n(r, t) ~ tql(r) with 

n,(r, t)--  {exp[E(V)t]  n(r)}i, i =  1,..., 5 (8.7) 

is a strong solution to Eq.(8.1) with initial data n(r)~H~(r) .  For 
f e  Hi(r, p) we define now an Euler semigroup E(t) as follows: 

5 5 

E(t)f(r,p)= ~ ~ ~exp(E(V)t]~,~(e,~o,f(r,p))e~o (8.8) 
n = l  m = l  

This Euler semigroup is a strongly continuous contraction semigroup on 
H~(r, p). This fact is a direct consequence of Proposition 8.1 and definition 
(8.8). We want to compare the approximate solution E(t)f(r,p) with 
actual solution of the LRBE with initial data f ( r ,  p). This is provided by 
the following theorem. 

Theorem 8.1. Let f~(r, p, t) be a solution to the LRBE with initial 
data f ( r ,  p) ~ H3(r, p); then, for t/> 0, 

H/~(r, p, t)-E(t)f(r, P)lll ~< Cz Irf(r, P)J]3 (8.9) 
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Proof. Application of Theorem 6.1 leads to the following explicit 
expression for IIf~(r, P, t) - E(t) f(r, P)[II: 

IIf~(r, p, t)-E(t)f(k,  p)lb 2 

x (e j ( -ke) ,  f(k, p)) ej(ke) 

exp(t2/1)(ey0, f(k, P))ejo] 

+ exp [ -- ( ~ - ~  + ~oP) t]  f(k,  P) 

+ e x p ( - ~ t )  Zl(ke,~)f(k,P) 2 

+ fk~<a d3k(1 + k2) exp kr - (v(p)+ikp~\  ~ Po/t]  f(k,  p) 

5 p))ej0] 2} - ~ [exp[(ik211)](qo, f(k, {8.10) 
j = l  

To estimate the second integral, we use following simple inequality: 

f~>ko d3k(1 +k2)Ig(k)[2 

(1+k2  ' <~fk>ko d3k(1 +k2)\--~-02 ,] lg(k)12 

<,ko 2t ~ d3k(1 +k2) t tg(k)] 2 
ak > k0 

~< [ko / IIg(k)llu,~k~] = (8.11) 

Taking k o = c~/g, we can denote the second integral in Eq. (8.10) as 14 ~< 
gzc I]f(k, P)I] 22. 

In order to estimate the first integral in Eq. (8.10), recall that for 
ke <6  an explicit form of the 2j(ke) and ey(kg), j =  1,..., 5, is given by 
Eqs. (7.2a) and (7.2b). Making use of these expressions, we can write the 
first integral, denoted I, as I =  11 + 12 + 13, where 
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11 ~<C 
5 t 

x like(O~, f (k ,  p)) + ike 

• ~ B),(e,o , f (k ,  p)) e.j o + k2e2f(k, p) 
/ = 1  

- ~ exp[ik)v~ t](ejo, f (k ,  p))ejo 
j = l  

(8.12) 

(8.13) 

5 

x [ika(t~j, f (k ,  p)) + ikz 

5 

• 
/ = 1  

5 

- E  
j = l  

q 
B)l(eto, f (k ,  p))J eso + k2e2f(k, P) 

exp( ik)vj t )( ejo, f (k ,  p))eyo 

The 12 and 13 can be easily estimated using Eq. (8.11) and we have, with 
7 = min{1, ill, f13} 

Ii ~< C exp( -Tt/e)e 2 I[f(k, P)lr ~, i =  2, 3 (8.15) 

Thus, it remains only to estimate 11. To this end, we observe that for given 
t > 0  and k2et ~ ~ ~ 1 

lexp[)v(ke)t/e] - exp[ik2jl t]j ~< C,e(1 + k 2) (8.16) 
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We can divide the region of integration in Eq. (8.12) into two parts, the 
first corresponding to k2< ~/st and the second to k5 < b, k2>~ ~/et. In the 
first region we use Eq. (8.16) and in the second we use the estimate given 
by Eq. (8.11) with l =  3 and choose ko = ((/t@/2. These lead to the estimate 

11 <<. C,52 Ilf(k, P)II~ (8.17) 

Taking into account that for l<<.m, IIf(k,p)llm, we obtain the desired 
estimate with constant C, depending on t. | 

Remark. The H~(r, p) is dense in L2(r, p); thus, the notion of the 
Euler semigroup can be extended to the strongly continuous contraction 
semigroup on the whole L2(r, p) and in this space we can prove an 
analogous estimatel i.e., for f(r ,  p) ~ H2(r, p) and t ~> 0, 

ILf,(r, p, t ) -  E(t)f(r, P)II t2(r.p)~ C5 Ilf(r, p)II 2 (8.18) 

The proof is identical to the proof of Theorem 8.1. From Eq. (8.18) we 
immediately get the following result. 

C o r o l l a r y  8.1. Letf~(r, p, t) be a solution to the LRBE with initial 
data f(r ,  p) s L2(r, p); then, for t >t 0, 

l imf~(r ,p , t ) -E( t ) f ( r ,p )=O a.e. in L2(r, p) (8.19) 
~ 0  

This means that the operator exp(B~t) converges in the limit 5 = 0  to the 
Euler semigroup E(t) in spite of the fact that the damping is absent in the 
Euler approximation. 

The operator E(V) generates a unitary group; thus, the notion of the 
Euler semigroup can be defined also for t < 0. In particular, for f ~ LZ(r, p) 
the following relation holds (t >~ 0): 

5 

E ( - t )  E(t)f(r, p ) =  ~ (ejo, f(r ,  p))eio (8.20) 
j = l  

The next step consists in comparing the Navier-Stokes semigroup N~(t) 
defined in the previous section and the solution of the Boltzmann equation. 
As N~(t) depends explicitly on 5, to see its effect in the limit e = 0 we shall 
consider simultaneously the long-time limit by rescaling the time variable 
t --, t/5. We have the following result. 

T h e o r e m  8.2. Let f~(r, p, t) be a solution to the LBRE with initial 
data f(r ,  p ) s  H2(r, p); then, for t ~> 0 the following are fulfilled: 

(i) [IE(-t/e) f~(r, p, t)-- E(--t/5) N~(t/e) f(r, P)l[C2(r.p) 

~< (5 IIf(r, P)LI2 (8.21a) 
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(ii) If we assume that Qf(r, p) - -0 ,  then 

[IE( - t /e )  f~:(r, p, t)  - E (  - t /e )  N~( t / e )  f ( r ,  P)II L2~,,~) 

~< C~ 2 Ilf(r, P)]]2 (8.21b) 

P r o o f .  The proof is similar to the proof of Theorem 8.1. 

9. S U M M A R Y  A N D  C O N C L U S I O N S  

I have shown that for hard interactions for sufficiently long times 
and/or small mean free paths the solution to the linearized relativistic 
Boltzmann equation can be approximated by the solution of the set of five 
differential equations for conserved variables only. This left open one 
important problem. As these equations are of parabolic type, there are 
well-known difficulties with an infinite speed of propagation and the 
Lorentz transformation. (3 5~ The present results state only that if any 
observer moving relative to the gas formulates a Cauchy problem for the 
Boltzmann equation in his frame, he can find a set of differential equations 
with corresponding initial data and then form with the help of solutions to 
these equations an approximation to the solution to the Boltzmann equa- 
tion valid for sufficiently long times as measured in his frame. On the other 
hand, if we are interested in comparing approximations made by different 
observers, we need of course to know how these equations of 
hydrodynamics transform from one frame to the other. But if one specifies 
in one frame the initial data on the surfaces t = 0, then when seen from the 
other, moving frame, these data are no longer of the Cauchy type, but 
rather are specified on some spacelike surface. Thus, in order to solve this 
problem, one should find first a solution to the LRBE with such initial data 
and next check if there exists a corresponding hydrodynamic approxima- 
tion, which means performing the same analysis we made for the Cauchy 
problem. 

It should be stressed that the present results are not conclusive in the 
sense that we were able only to analyse the explicit form of the solution in 
the long-time limit or zero-mean-free-path limit. In these limits one is left 
with the leading terms only, which results in a breakdown of the causal 
structure of the relativistic Boltzmann equation. ! have recently discussed 
this problem for a model Boltzmann equation, (23) where I have shown that 
teven a hyperbolic approximation to this equation converges in both limits 
to the corresponding parabolic equation of hydrodynamics. On the other 
hand, it is clear from the results obtained so far that apart from the five 
conserved variables, no other can be sorted out of the whole set of non- 
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hydrodynamic variables as is done in the derivation of extended 
hydrodynamics or in the Grad methods of moments. (2'4'5) In this sense the 
present results are close to the approach of van Kampen. (6) 

A P P E N D I X  A 

I present here the details of the perturbation expansion for the eigen- 
values 2i(ke) and eigenfunctions e~(ke) of the operator Bk~ for i =  1,..., 5. 

The set No = ker(L) is spanned by five independent but in general not 
orthogonal functions f l /2,  PxJo"l/2, [JyYO- s  P'zJOn t ~  and pof~/2. Denote by 
{~b~}~= 1 an orthonormal set of functions obtained from the above set with 
a Gram-Schmidt procedure. Now consider the eigenvalue problem for the 
operator Bk~ 

ikeEOj(ke) + L0j(k~ ) = )~j(ke) ffj(ka) (A.1) 

where 

E = - kp/kpo (A.2) 

We treat ks as a small parameter. Taking a scalar product in L2(r) of 
Eq. (A.1) with Oj(ke) and using the fact that the operator L is independent 
of k, we see that 2j(ke) is indeed a function of ks alone, which we have 
already anticipated in our notation. We expand now the eigenvalues and 
eigenfunctions of Bk~ as follows: 

)~:(ke)= ~, ;%(t'ke) ~ (A.3) 
n = O  

e j (ke)=  ~ ej,(ike)" (A.4) 
n = O  

The existence of such expansions is assured by the Kato-Rellich theorem. 
We are interested in calculating coefficients 2j, and e:n for j =  1,..., 5. 
Making use of these representations of ):/(ke) and ej(ke) in Eq. (A.1) and 
comparing terms of the same order in ke, we obtain 

Lejo = 2joejo (A.5) 
5 

Lej, = E )tj, ej, ~ - e e j , _ l ,  F/~< 1 (A.6) 
m = O  

For j = 1 ..... 5, Lejo = 0. As the zereo eigenvalue of L is fivefold degenerate, 
we assume that the ejo are linear combinations of {~b~}~= 1 in the form 

5 

ejo -- ~ Aj~z, j =  1 ..... 5 (A.7) 
I = 1  
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The coefficients A jr are chosen in such a way that the operator E is 
diagonal in eso, 

(ejo, Eeto) = 2j~ 6sl, j, l = 1 ..... 5 (A.8) 

These 2j~ and A jr can be calculated as the eigenvalues and corresponding 
eigenvectors of the following matrix equation: 

where 

( )o i -  M )  A ' =  0 (A.9) 

( ~ ) r =  jAil,..., Ass] (A.10a) 

A 0 = (~b~, E~bj) (A.10b) 

M~ 6R, Mij =Mji  for i C j  and it is easy to see that the matrix M is 
diagonalizable and that 2il and the corresponding A z are real. As the 
[[EII< 1, we see also that X2i~[ < 1. 

Note that in the case when the degeneracy is not removed by the 
operator E in the first-order perturbation, i.e., 2i~ =)v~ for some pair 
i, j ~ ( 1  ..... 5), we can always choose these e~o and ejo such that they 
also diagonalize the operator E ( Q L Q ) - ~ E ,  where Q =  1 - P  and P is a 
projection on No. 

The first-order corrections to eso can be calculated from the following 
equation: 

L @ j l  = (,i~jl - E)@jo (A. 11 ) 

The solution of this equation has the form 

Oil = - ( Q L Q )  l E~Jjo (A.12) 

We can add to this solution a combination of the solutions of the 
homogeneous equation L~, = 0. We write then the general form of ej~ as 

5 
es~ = - ( Q L Q )  -1Eejo  + ~ B),e,o (A.13) 

l=1 

with B~ = 0. 
Coefficients B], t are fixed by the requirement that the rhs of the 

equation for the second-order corrections is perpendicular to No, i.e., 

L~'j2 = (2/~ - E)ej l  + ).i2ej2 (A.14) 

822/57/i-2-16 
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Taking the scalar product of this equation with ezo, l = 1 ..... 5, we obtain 

2 j 2  = -(ejo, E(QLQ) 1 Eejo) (A.15) 

I = ~ - - ( ) ~ j l  --2ll) -1 (e~o,E(QLQ)-~Eejo), i--/=j, 2jl # 2 ~  (A.16) 
B)t (0, otherwise 

The operator (QLQ) 1 is not positive definite; thus, the 2j2 >/0. In fact, 
we need to show that 2j2 > 0  for j =  1,..., 5. To see this, note that 
(QLQ)-1 EO-= 0 iff ~ = o~pof m. We assume then that one of ejo, say elo = 
O~poflo/2. Without loss of generality, we can take the z axis parallel to the 
vector k and we see then that Eelo =O~pzf~/2. Taking now the scalar 
product of Eeto with eso, j-= 2,..., 5, we see that all these ejo are orthogonal 
to pzf~/2 and, as they together with elo form an orthonormal set, also to 
pofU 2. It is easy to check that the subspace orthogonal to {pof~/2, p j1/2}  
in No is only three dimensional; thus, the set {ejo}~=2 cannot be linearly 
independent, which contradicts the fact that they form an orthonormal 
basis. We see then that the ejo must be either orthogonal to po f  1/2 or 
be of the form eso=~PofU2+fltp with (~p, pof~/2)=O. Thus, -)~j2~< 
supj (ejo E, (QLQ) -1 Eeso ) < O. 

It follows from the remark above that for 2~o = 5~jo, i r  we have 

Aij = (e~o, E(QLQ)-I Eeio ) = 0 (A.17) 

In general we obtain for n >~ 1 

5 

ejo = - (QLQ)  1Eejn_l + ~ B~e,o (A.18) 
l=1  

with B~ -= O. 
For B} and 2in we obtain two coupled recursive relations: 

)~in =(e/o, E( - (QLQ)  -1 E) n t eio) 
n--2  5 

+ ~ ~ Bu 1,~eio, E( - (QLQ)-IE)meso)  (A. 19) 
m ~ l  j ~ l  

n + l  

( ' ~k l - -~ i l )B ink  = E "~im--ik2' R n + l  m 
m--2 

n--I  5 

-- 2 2 BTj P(eko, E ( - ( Q L Q )  ' E) peso) 
p ~ l  j = l  

- -  (ekO , E (  - -  ( Q L Q ) - I  E ) "  e~o) ( A . 2 0 )  
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The vectors e j (ke)= Z,,~o ej,,(ike)" have to be normalized. Let us choose a 
normalization such that 

( e i ( - ke ) ,  ej(ke)) = '~ij (A.21) 

For ke small enough, we can write 

)oj(k~) = ike)~j, - k2~2.~j2 + o(k2~ 2) 

5 
ej(ke) = ejo + ike ~ B)le~o + ike~j, + o(ke) 

l = 1  

where 

tpj, = - ( Q L Q ) - I  Eejo 

We see that 0Pjl, elo) = 0, j, l =  1,..., 5. 

A P P E N D I X  B 

Here I calculate the explicit form of the coefficients 2i, and %, in the 
rest frame of the gas. In such a frame the hydrodynamic four-velocity u ~ 
has the simple form uU= [ 1 , 0 , 0 , 0 ]  and fo = C e x p ( - p o ) .  The ortho- 
normal set {~bi} which spans No can be chosen as 

q~,o = f~/2N -,/2 (B. la) 

n fl/2(.~001"1--1/2 (B.lb) 

n ['1/2[S002]-1/2 (B.lc) 4 30 ~ F y J O  k ] 

~b40 = pj1/2(S~176 (BAd) 

T~ 1/2 000 1/'2 ~50~"(pofl/2-- N fo  )QS (T~)2) ( B . l e )  

where 

N =  f d3Pfo 

T ~ = f d3 P P~ P~ )Co 
Po 

S ~ = f d3 pp~ P~fo 

(B.2a) 

(B.2b) 

(c~, f i=0 ,  1, 2, 3) (B.2c) 
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From the symmetry offo with respect to interchange Pi i-- l, 2, 3, we see 
that S ~  S~ S ~ The matrix equation determining both 2a and A i 
has the form 

( M -  2I).,# ~= 0 (B.3) 

where M U = Mj~, and for i > j, 

Mpr = ~(Opo, (Pz/Po)Oqo), p = 1, q = 4 or p = 4, q = 5 (B.4) 
10, otherwise 

The solution of this equation leads to the following eigenvalues and eigen- 
vectors: 

"~11 = - -  [-(1~14) 2 -I- ( /~45)2]  1/2 = --/~ (B.Sa) 

elo = 2-1/2 (~-2 r m + r + ~ ~bso) (B.5b) 

)~21 = 2 (B.6a) 

e2o = 2 -  1/2 ( -- ~--~4 ~1o + ~4o -- fl~-~ q~5o ) (B.6b) 

231 = 0 (B.7a) 

e3o = r 1o - -~- eso (B.7b) 

241 = 0 ( B . S a )  

e4o = eeo (B.8b) 

2sl = 0 (B.9a) 

eso = r (B.9b) 

where 

fl14 =f  d3PP~polfo(NS ~ ,/2= T33(NS033)-l/2 (B.10) 

~4S = J~15 - -  /~425 (B.11) 

~15 =f d3pp2zfo[S033_(S 000 ( T N ) 2 ) ] - 1 / 2  

= I NSOO o _  (TOOy j (B.12) 
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fl]5 f d3PPT fo S~176176 8 033 
Po 

TOOT 33 
_ (N8~ 1/2 [NSOOO_ (TOO)2]--1/2 (B.13) 

In the  nex t  order  in k8 w e  o b t a i n  

1 V~ fi,4 fi45 T~176 [NSOOO_(vOO)2] ,/2 F, 
)'1Z=2L[2N1/2 2N u2 

0~- (S033) -1 F21 

812 = ~ L (  /- 2 

X INS ~176176 (r~176 2] --1/2 ff'l -~- (8033) -1 1P2 

Bl13 = 21/2/~ -- T 

  ,ooo 

J~14 TOON_l/,2[NSOOO (T00)2]-1/2} F11 (B.14c) 
+T 

ell (QLQ) -lpz _ el ~ + B12e2o 1 = - -  + B13e3o 
Po 

,,~22---~[{ff-~N l/2--[J4~ST~176176176176176176 1/2} El 

4- (S~ -1 Fz] 

B~'3 = - B I 3  

1 1 e21 -(QLQ)-lPzezo -t- Blzelo + B23e30 
Po 

)~32 ={[J~ 5N 1/2+fl14T~176 --TZ 

x INS  ~176 (T~176 z ] v2 F1 

(B.14a) 

(B.14b) 

(B.14d) 

(B.16a) 

(B.15a) 

(B.15b) 

(B.15c) 
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e31 = - ( Q L Q )  t P_5 
po 

•42 = ( S O I l )  1 / ' 3  

e30 -I- B[3e30 -k- B~13e20 (B.16b) 

(B.17a) 

Pz e 4 1 = - ( Q L Q )  1--e4o 
po 

252 = ( S 0 2 2 )  - 1 /73 

(B.17b) 

(B.18a) 

e5, = - ( Q L Q )  t p_s 
po 

e5o (B.18b) 

where 

F1 = _ ( f ~ / 2  Po p~' ( Q L Q )  I P-ZZpo f U 2 )  

( 2 P~ 1/2~ F2 = _ f~/2 P~, ( Q L Q ) - I  
Po Po f ~  } 

- \ J O  Po ' ( Q L Q )  -~ po f ; /2  

(B.19a) 

(B.19b) 

(B.19c) 
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